

Muon collider Monte Carlo tools?

[Muon collider mini-meeting @ FNAL]

Jan Winter

Fermilab

- Phases of event generation
- Comments on hard-process simulation
- Comments on parton showers and ME+PS merging
- Comments on hadronization and decays

http://www.sherpa-mc.de/

Monte Carlo event generation

Rely on factorization & decompose description of event generation into phases.

- Phases treated with perturbative methods:
- FS parton showering: multiple soft/coll emissions.
 resum to all orders large logs related to soft/coll singularities (including photons)
- ISR and beamstrahlung.
 What can we learn/adopt from electron—positron colliders?
- → Phases of the non-perturbative evolution of the event:
- Hadronization: this is modelling. conversion of partons into primary hadrons
- Hadron decays: effective models. tau decays, additional photons in such decays
- Not available: reliable description of ISR and beamstrahlung effects at

muon colliders: adjust or implement new solutions into existing Monte Carlo tools.

Monte Carlo tools for muon colliders

- Any tool that worked for LEP potentially can be adjusted to muon collider needs. [To 1st order e^+e^- and $\mu^+\mu^-$ initial states can be treated similarly.]
- → Muon collider studies will benefit from any new technique developed to improve the description of LHC final states (NLO+PS matching, ME+PS merging, cascade decay treatments).
- Need for hadron-level predictions two main streams
 - full-fledged MC event generators [Pythia, Herwig, Sherpa]
 - specialized tools simulating a single event phase, thus, relying on interfaces (mostly to Pythia, Herwig) [Alpgen, CompHEP]
- Need for general interface formats → Les Houches accord(s)
- Need for parton-level (hard process) generators ...
 - hosting a variety of (modern) models [(S)MadGraph/Event, CompHEP, Sherpa]
 - easily extendible to include new models [(S)MadGraph/Event, CompHEP, Sherpa]
- Need for a good handling of decay chains initiated by massive SM/BSM particles and their subsequent showers
- Muon collider studies will benefit since these issues are already of importance for the LHC.

Simulation of the hard process

General task generate (unweighted or weighted) parton-level events according to the differential cross section at tree level

$$d\sigma = \frac{1}{F} d\Phi |\mathcal{M}|^2$$

Two steps to take

- $m \omega$ calculate the hard matrix element $|\mathcal{M}|^2$
- $m{ ilde{ }}$ integrate over/sample the phase space Φ

Difficulties

- ME calculation becomes rather complex for increasing number of FS particles
- highly dimensional phase space, integrands usually are peaked, cuts on kinematic variables

Number of good solutions

- MEs: analytic expressions [Pythia, Herwig], Feynman rule methods [(S)MadGraph/Event, Amegic], recursive methods [Alpgen, Vecbos, Comix]
- Phase space: variety of methods to flatten out peak structures: VEGAS, multi-channeling, single-diagram enhanced integration

Typical examples for BSM events

→ Similar signatures possible in SUSY and UED.

→ No way to avoid the appearance of jetty structures even that the only come from the final state as for the case of muon colliders.

Parton shower concept

Simulate additional jet activity ... traditionally ... by parton showers

[Pythia, Herwig, Ariadne]

- soft/collinear parton emissions added to final states [resum LLs]
- $m{ ilde{\square}}$ partons are evolved down to hadronization scale [ordering in virtuality, angle, p_T]
- bulk of radiation and particle multiplicity growth is described by parton showering
- ullet provides suitable input for universal hadronization models [scales of $\mathcal{O}(1 \text{ GeV})$]

factorization – recursive definition in collinear limit

$$d\sigma_{n+1} = d\sigma_n \frac{\alpha_s(t)}{2\pi} \frac{dt}{t} dz P_{a \to bc}(z)$$

Additional jets by parton showers?

For soft jets parton shower approach is valid and reliable.

Limitations:

- lack of high-energetic large-angle emissions → hard jet description unreliable
- semi-classical picture
- quantum interferences and correlations only approximated
- shower seeds are leading order QCD processes only

Improvement:

- (1) add next-to-leading order shower seeds goes under the name of MC@NLO [Frixione, Webber] promising POWHEG method [Nason et al.], positive weights, first application to e^+e^- annihilation to hadrons exist [Latunde-Dada, Gieseke, Webber]
- (2) describe first few hardest emissions according to tree-level MEs

 goes under the name of ME+PS merging (Lönnblad)CataniKraussKuhnWebber, MLMangano

Parton showers ... recent developments.

- New physics challenges (LHC), rewrites of PYTHIA/HERWIG codes plus
- enormous progress in the techniques of combining (N)LO calculations with parton showers led to an intensive overhaul of existing formulations.
- Efforts aim at ...
 - achieving better analytic control.
 - gaining better understanding of systematic uncertainties.
 - providing (easier/more consistent) merging/matching with LO/NLO calculations.
 - going beyond common approximations (LL, large $N_{\rm C}$, include small-x)?
- New 1 → 2 splittings showers, for PYTHIA [Sjöstrand et al.] and HERWIG [Gieseke et al.], and new shower formulation based on Catani-Seymour dipole factorization [Dinsdale et al.], [Schumann, Krauss].
- Still other ways to identify/pick leading logs of multiple QCD emissions? Yes. 2 → 3 splittings. → Lund CDM as implemented in ARIADNE is traditional.

News: VINCIA [Giele et al.]. And, a SHERPA dipole shower [JW, Krauss].

ME+PS merging ... à la CKKW

- combine parton-shower pros (soft emissions) +
 ME pros (hard emissions, quantum interferences, correlations)
- avoid double counting and missing phase space regions

ME+PS merging ... à la CKKW

- combine parton-shower pros (soft emissions) +
 ME pros (hard emissions, quantum interferences, correlations)
- → avoid double counting and missing phase space regions

Divide multijet phase space into two regimes by k_T jet measure at Q_{jet} .

- ullet tree-level MEs: jet seed (hard parton) production above Q_{jet}
- ullet parton showers: (intra-)jet evolution $Q_{jet} < Q < Q_{\mathrm{cut-off}}$
- ullet MEs regularized by $Q_{jet} < Q_{ij} = 2 \min\{E_i, E_j\}(1 \cos \theta_{ij})$

ME+PS merging ... à la CKKW

- combine parton-shower pros (soft emissions) +
 ME pros (hard emissions, quantum interferences, correlations)
- → avoid double counting and missing phase space regions

Divide multijet phase space into two regimes by k_T jet measure at Q_{jet} .

- ullet tree-level MEs: jet seed (hard parton) production above Q_{jet}
- ullet parton showers: (intra-)jet evolution $Q_{jet} < Q < Q_{\mathrm{cut-off}}$
- ullet MEs regularized by $Q_{jet} < Q_{ij} = 2 \min\{E_i, E_j\}(1 \cos \theta_{ij})$

Eliminate/sizeably reduce Q_{jet} dependence.

- identify pseudo shower history of MEs via backward clustering
- $oldsymbol{\square}$ accordingly reweight MEs by combined α_s and Sudakov weight
- $oldsymbol{\circ}$ add showers to ME partons and veto emissions above Q_{jet}

News on CKKW: heavy quark production + decays

- Narrow width approximation → full ME factorizes into production & decay parts
 - AMEGIC++ ... use its decay-chain operation mode
 projection onto relevant Feynman diagrams, Breit-Wigner intermediate particle masses
 - APACIC++ ... enable production + decay showers based on massive splittings e.g. $\mu^+\mu^- \to t\bar{t}$ FS shower for tops e.g. $t \to W^+b$ IS shower for top, FS shower for bottom
 - CKKW ... separate and independent merging of MEs with extra jets & showers in production and any decay
 - CKKW ... reweight and veto by respecting the factorization
 - Schematically, e.g.: $\mu^-\mu^+ \to t \ [\to W^+bg\{\mathbf{1}\}] \ \bar{t} \ [\to W^-\bar{b}g\{\mathbf{1}\}] \ g\{\mathbf{1}\}$

$$\mu^{-}\mu^{+} \rightarrow t \left[\rightarrow W^{+}b \right] \bar{t} \left[\rightarrow W^{-}\bar{b} \right]$$

$$\mu^{-}\mu^{+} \rightarrow t \left[\rightarrow W^{+}b \right] \bar{t} \left[\rightarrow W^{-}\bar{b} \right] g$$

$$\mu^{-}\mu^{+} \rightarrow t \left[\rightarrow W^{+}b \right] \bar{t} \left[\rightarrow W^{-}\bar{b} g \right]$$

$$\mu^{-}\mu^{+} \rightarrow t \left[\rightarrow W^{+}b \right] \bar{t} \left[\rightarrow W^{-}\bar{b} g \right] g$$

$$\mu^{-}\mu^{+} \rightarrow t \left[\rightarrow W^{+}b g \right] \bar{t} \left[\rightarrow W^{-}\bar{b} g \right] g$$

⇒ "CKKW 1-1-1"

. . .

Apply to top pair production & decays at ILC

→ Some preliminary ILC results ...

 k_T diff. 4 o 3 jet rate

Vary jet separation

Sanity test for method: single contributions cooperate to give decently stable result.

CKKW mini test: top pairs at a 2TeV muon collider

⇒ Sherpa: $\mu^+\mu^- \to t(be^+\nu_e)\bar{t}(\bar{b}jj) \to \text{hadrons}$ vs $\mu^+\mu^- \to q\bar{q} \to \text{hadrons}$

→ 1-Thrust and charged-particle scaled momentum distribution.

Numbers: charged particles ~ 74 (LEP1: 21), charged pions ~ 60 (LEP1: 17), charged kaons 7..8 (LEP1: 2), protons 4..5 (LEP1: 1) \implies Upshot: WORKING approach!!

Hadronization models

scales of 1 GeV ... modelling the nonperturbative dynamics of a partonic system

Lund string fragmentation

Cluster fragmentation

String:

ullet stringlike colour field between q moving away from \bar{q}

string breaks up into hadronic pieces

- gluons lead to kinked strings
- pioneers: Andersson, Sjöstrand
- Pythia is home of string model
- Sherpa interfaces to Pythia's string model
- Cluster: formation and decay →
- LPHD and preconfinement
- ▶ Locality and universality ⇒ modular structure
- pioneers: Field, Wolfram, Webber
- Herwig hosts cluster model
- Sherpa will have its own cluster hadronization (model) [JW, Krauss]

Soft effects \Rightarrow low p transfer model primary hadron generation

Hadron decays

- Branching ratios (e.g. from PDG) as input.
- **Decay** kinematics à la $d\Gamma(P \to p_1 \dots p_n) = \frac{1}{2P} \cdot |\mathcal{M}(P, p_1 \dots p_n)|^2 \cdot dLiPS$
- From effective models + form factor models.
- General purpose Monte Carlos: strong efforts to provide streamlined and comprehensive decay frameworks [Pythia, Herwig, Sherpa]
- Specialized decay programs: EVTGEN [Lange, Ryd] and Tauola [Jadach, Was]
- Eg. in Sherpa:

• Example: $B^+ \to \pi \nu_e e^+$.

